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THE COMPLETENESS OF 
PEANO MULTIPLICATION 

BY 

MARK E. NADEL ' 

ABSTRAC'F 

It is shown that the set of all theorems of Peano Arithmetic which mention only 
multiplication is a complete theory in the corresponding restricted language. 
The notion of a complete decidable covering of a theory is introduced. 

w By Peano Addition (usually called Presburger Arithmetic) we mean the 

set of all theorems of Peano Arithmetic which do not mention multiplication. By 

Complete Addition we mean the complete theory of (to, + ), the natural numbers 

with addition. Presburger [10] gave a quantifier elimination for Peano Arithme- 

tic in a language augmented by some basic definable relations. This showed that 

Peano Addition was decidable, complete, and hence the same as Complete 

Addition. 

Let us now define Peano Multiplication and Complete multiplication in an 

analogous way. The best known proof of the decidability of Peano Multiplication 
originated with Mostowski [8]. His method of proof was a precursor of what is 
today usually called the Feferman-Vaught Method [4]. The idea is basically this. 
The set of positive integers with multiplication is isomorphic to the weak direct 
product of countably many copies of the non-negative integers. To see this, think 
of the n th coordinate of an element of the direct sum as representing the 
exponent of the n th prime in the prime decomposition. Now, the decidability of 

the multiplicative system is obtained from the decidability of Complete Addition 
and the decidability of the theory of the Boolean algebra of all finite and co-finite 

subsets of to, together with the ideal of finite sets [cf. 11]. In an earlier paper [12] 

Skolem had suggested a quantifier elimination for complete multiplication and 

gave what we would call today a proof by example. 
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It would only seem natural to investigate whether the situation for multiplica- 

tion is analogous to that for addition. Is Peano Multiplication complete, or 

alternatively, is Peano Multiplication the same as Complete Multiplication? If 

not, is Peano Multiplication at least decidable? The first question seems 

especially appropriate in view of the recent renewed interest in sentences 

undecidable in Peano Arithmetic [cf. 9]. 

In our review of the literature, though we found numerous references to the 

decidability of Complete Multiplication, we found little or no mention of the 

problem for Peano Multiplication and most of what we did find seemed 

confused. For example, as was pointed out to us after we completed the work on 

this paper, it is stated in [5] that Peano Multiplication is complete, and Malcev 
[7] is cited as a reference. However Malcev [7], which is concerned with a more 

general question of giving a quantifier elimination for "locally free algebras", 

deals only with non-associative algebras and so does not apply to the present 
context. 

The following is the main result of the present paper and gives an affirmative 
answer to the questions stated above. 

THEOREM. Peano Multiplication is complete and hence decidable. 

This result was discovered independently by P. Cegielski whose proof involves 
a direct quantifier elimination for Peano multiplication, and so differs considera- 

bly from the more "model theoretic" proof presented herein. Even though our 
proof is quite short, it still follows by noticing the few properties of arithmetic we 
actually use, that only a small amount of induction is really needed. 

An arbitrary model of Peano Multiplication, nor even the multiplicative 

semigroup of a model of Peano Arithmetic, need not be a weak direct product, 

thbugh, in the latter case it would appear to be a weak direct product from the 
viewpoint of the model of Peano Arithmetic. This, of course, raises the 

possibility of trying to formalize the Skolem-Mostowki argument within Peano 

Arithmetic and in such a way obtain a proof of the Theorem. The approach we 

will adopt, which appears to be simpler and perhaps more intuitive, will be to 

work purely externally. We will need to make use of the completeness of Peano 

Addition rather than the decidability of Complete Addition. 

We should like to express our gratitude to Y. Gurevich, V. Harnick, H. J. 

Keisler, J. Knight, L. Lipshitz, M. Rabin, S. Shelah, C. Smorynski and R. Vaught 

for conversations relating to the preparation of this paper, and to the University 

of Bar Ilan where much of the preparation took place. 
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w In proving the Theorem we will use the continuum hypothesis. Of course, 

since the continuum hypothesis holds in L, the universe of constructible sets, and 

since the completeness of Peano Multiplication is absolute between L and the 

real universe, the dependence of the proof upon the continuum hypothesis is 

only virtual. 

Throughout this paper we will use the term saturated model to denote a 

N,-saturated model of cardinality 1~,. The continuum hypothesis guarantees the 

existence of saturated models. Even without the continuum hypothesis, a 

complete theory T can have, up to isomorphism, at most one saturated model. 

In particular if L and L'  are alphabets with L C L' and T and T' are theories in 

L and L'  respectively such that T C T' and T is complete, then the reduct of a 

saturated model of T' to L must be the unique saturated model of T. On the 

other hand, a saturated model of T can always be "expanded" to a saturated 

model of T'. We will establish the Theorem by proving 

LEMMA. Let (A, + , .  ) and (B, +,"  ) be saturated models of Peano Arithmetic. 

Then, (A, .  ) =- (B,. ). 

Then, since any saturated model of Peano Multiplication can be expanded to a 

saturated model of Peano Arithmetic, it follows that Peano Multiplication has a 

unique saturated model, and so is complete. 

w Before beginning the proof of the Lemma in earnest, we familiarize 

ourselves with the basic structure of a model (A,.)  where (A, + , .  ) ~ P. Though 

much of what we say here would hold as well for arbitrary models of Peano 

Multiplication, in this special context a clearer picture can be painted. We will 

use familiar terms, such as prime, without explicitly defining them in the 

formalism of Peano Multiplication or Peano Arithmetic, but such definitions can 

be easily formulated. Of course, there will be, for example, non-standard primes 

in a non-standard model. 

The first thing to notice is that each non-zero element a has a prime 

decomposition. Specifically, we can associate with each non-zero element a a 

function da from the set P of all primes of A into A, where for each p E Pda(p) 
is the highest power of p that divides a. It is easy to prove in Peano Arithmetic, 

using mathematical induction, that such a power exists and is unique. In fact, the 

function do(p) of both a and p is definable in (A, + , ' ) .  

Moreover, the prime decomposition determines the element, i.e. if d~ = db, 
then a = b. To see this, suppose a is the least element such that for some b > a, 

da = db. Then, using the division algorithm, there is x, and y < a, such that 
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b = xa + y. It is now easy to check using some simple theorems of Peano 

Arithmetic that d~ = rib, contradicting the minimality of a. 

Next, the familiar rule for adding exponents will guarantee that do.b(p)= 

do (p) +db (p), where the + comes from (A, + ). Now, since Peano Addition is 

complete, if (A, + , .  ) is saturated, (A, + ) is uniquely determined. Thus, once 

we have the prime decompositions, multiplication will be determined. 

Finally, later we will make use of the following simple fact which is easily 

proved in Peano Arithmetic. 

(*) Let po,'" ",p.-1 be primes and ao , "  ", a._l arbitrary elements. There is 

some element f such that for each i < n, dr(p,) = a,. 

w We now prove the Lemma. For the remainder of this section (A, + , .  ) and 

(B, + , .  ) will denote saturated models of Peano Arithmetic. We will actually 

show (4~,") --| (B,.).  We first introduce the terminology necessary to describe 

the back and forth relation. 

First, for a o , ' " , a , - ~ E A ,  bo , ' " ,  b,-1EB, we write ( a o , " ' , a , - 0 - -  

(bo,'" ", b,-1) ill (A, +,  ao , "  ", a , - O -  (B, +,  bo ,"  ", b.-O. We could, of course, 

replace --- with ~ .  For future reference we let (gd'(Xo, �9 �9 ", x,-0:  i • o,) be a list 

of all the basic formulas in the n-variables Xo,." ", x,-, given by the Presburger 

quantifier elimination. For this purpose we now assume our models have 

constants for 0 and 1, which are definable in the structures anyway. Finally, for 

a E A, we let Po b e  the set of primes of A dividing a. 
We are now prepared to define the candidate for a back and forth relation. If 

fo,'" ", f . -1E A, go,"  ", g.-~ E B, we write 

fro," ", f.-,) - (go," ", g.-,) 

iff there is a bijection a from the primes of A onto the primes of B such that for 
each prime p of A, 

( oOJ), " " ", df._,(p)) - (d,+(a(l,)), " ", d,._, (a (t,))). 

Stated slightly differently, given fo,'" ", f,-i in A, we associate with each prime p 

of A the "Presburger n-type" of (d~o(p),...,dl._,(p)). Then f f o , " ' , f , - O ~  

(go," ", g , -0  iff each n-tuple gives rise to the same number of the same 

"Presburger n-types". Since we are dealing with saturated models, each such 

type will be realized either some finite number of times or ~I1 many times. It is of 

importance to note that we need only pay attention to the relation between the 

highest powers of the same prime, and need not compare powers of different 
primes. It is not dittieult to see that the mapping taking 1~ to g+ for i < n will be a 

partial isomorphism from (A, . )  to (B,.).  
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We now need to show that if fo , . . . , f , -1 , fnEA,  go , ' . . , g~ -~ .B  and 
f ro ,"  " , f . -~ ) -  (go ,"  ", g~-l), then there is some gn E B such that 

fro," " , fn - l , f . ) - (go ,"  ", g~-l, g~). In order to help find such a gn we introduce 

notation for certain formulas. For each !, m, n E to and s E 12 we choose a 

formula O~,,,,(xo," ", x~-l) of the language of Peano Arithmetic which expresses 

"there are at least m primes p such that for all k < / ,  

r �9 �9 ", dx._ltP)) i~ s(k) = 1." 

We leave the precise formulation of 0~r~ to the reader. Then, relying on the 

saturation of (A, + , .  ) and (B, + , .  ) we can see that 

(1) If fo, '" ", fn-, E A, go , "  ", g~-~ ~ B, then f ro ,"  ", f~-l) - (go ,"  ", g~-l) iff for 

all s and m, (A, +,')~=O~mffo,'",f~-,) iit (B, +,')~O~.m(go,' ' ' ,g.-O. 

This follows since the formulas O~.m will determine how many realizations 

there are of each "Presburger n-type."  

We may now consider the following type ~" over go , "  ", g~-~ consisting of the 

formulas 

(i) 0~+l(go,.. ", g.-bXN) such that (A, +,.)~ O:+'ffo, .. ",f~-l,f.) and 
(ii) -i 0 :+~ (go," ", g.-1, x. ) such that (A, +,. ) ~ -i 0 :+~I fro," ", fi-1,/. ). 
Since fro," ", [.-0 ~ (go,': ", g.-~), each individual "Presburger (n + 1)-type" is 

consistent and hence realized since (A, + )---(B, + ). Then, by (*) ~" is finitely 

consistent, and so realized in (B, +,. ) since it is saturated. Then, by (1) above, 

fro," ", [.) ~ (go," ", g,). Notice that though we do not necessarily preserve the 

same map from the primes of A onto those of B, this is not required. This 

finishes the proof. 
Now looking back at our proof we see it is possible to extract a quantifier 

elimination. Using the Presburger quantifier elimination we first see how the 

relation ~ could have been expressed purely in terms of multiplication. 

At  the urging of the referee we give some indication of how this may be done. 

We assume the reader is familiar with the Presburger quantifier elimination in 

terms of congruences. In order to make our formulas more easily understanda- 

ble, we employ expressions such as "x  = 1", "x  is a prime", or "x  I Y", i.e. x 

divides y, which we assume the reader can easily translate into the language of 

multiplication. 

First we define a formula h (x, p, y) to say that p is a prime and x is the highest 

power of p dividing y. 

h(x,p, y) ---t~p is a prime & Vz[z  Ix --.> 
=1)] a p o x  y. 
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We next define for n E to and i <  n a formula 6 " ( a , b , p )  which expresses 

d~(p)  - d b ( p ) +  i (mod n). 

67(a, b, p )  - D f V x , x 2 [ ( h ( x ~ ,  p, a )  & 

h (x z ,  p,b))---> V 3 u ,  v 
k,l<n, lk I I - i  

[x,  = u . . . . .  u o p  . . . . .  p & x~. = v . . . . .  v o p  . . . . .  p])]. 

n times k times n times l times 

Then, it follows that ( a l , ' . . ,  a , ) - ( b , , . - . ,  b,,) iff for each L , "  ", l,,, k , , . . . ,  k,,, 

m, n and j in to, and i <  n, 

n /  II  0 I k I ::1 = jpS, (a, . . . .  a.7, a~ . . . . .  a~ ~) 

n Ii  I i f f  : l -_> ]pS, (b ,  -o b~,, b~' k . . . . . . . .  b,,;"). 

Thus, we see that the complete type in the language of multiplication of any 

finite tuple of elements is completely determined by formulas of the form just 

described. Now, using a standard compactness argument it follows that each 

formula of the language of multiplication is equivalent in PM to some (finite) 

Boolean combination of these formulas. 

w In this final section we briefly introduce a general notion prompted by the 

example of Peano Arithmetic. Peano Arithmetic is, as we all know, an 

incomplete and undecidable theory. Nonetheless, each model (A, + , .  ) of Peano 

Arithmetic can be split into two parts, (A, + )  and (A, . ) ,  where (A, + )  is a 

model of Peano Addition, a complete decidable theory, and (A, . )  is a model of 

Peano Multiplication, also a complete decidable theory. Moreover, Peano 

Arithmetic even has a model, viz., the standard model (to, + , .  ), such that both 

(to, + ) and (w,-) are decidable, i.e. have recursive complete diagrams for some 

appropriate arithmetization. We wish to abstract this situation and generalize it 

so that the splitting need not be simply by reducts. 

In order to do this we will need to employ the notion of an interpretation of 

one alphabet into another. For our purposes, by an interpretat ion a from an 

alphabet Lf into an alphabet Lg', written a : L -~ L' ,  we mean a mapping that 

assigns to each symbol of ~ a quantifier free expression of Lf' of the appropriate 

type, e.g. a 3-place relation symbol would be sent to a quantifier free formula 

with 3 free variables, while a 2-place function symbol would be sent to a term 

with 2 free variables. For the present we will assume all alphabets finite. Given 

a :Lf--~ Lf' and an Lf'-structure d,t, we can define, in a fairly obvious way, the 

associated Lf-structure d,t-" obtained from d,t by using a. If d / i s  recursive, i.e. 
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has a recursive atomic diagram for some arithmetization, then M ~ is easily seen 

to be recursive. 

Before proceeding to the next definition, we should like to emphasize that we 

do not regard it as being necessarily in its final form. It is quite likely that further 

investigation may lead to some modification. Nevertheless, the present discus- 

sion should remain meaningful under foreseeable modifications. 

DEFINITION. Let T be a theory in the alphabet ~. By a complete decidable 
covering of T we mean a collection of complete decidable theories T,,. �9 T, in 

disjoint alphabets ~ ,  = {R' , , . . .  }, ." -, ~ ,  = { R I , . . .  } and an interpretation 

a : Le ~ U �9 �9 �9 U ~ ,  and interpretations a, : 2?, ~ ~, for i = 1 , . . . ,  n such that 

(i) for each model M of T there are models (N, R ~.. �9 ) ~ T , , . - . ,  (N, R 7, . . .  ) 

7", such that 

( N ,  RE,, . .  . , . .  . , R ~ , .  . . ) -"  ~-J//; 

(ii) there is some model J// of T~ U. �9 �9 U 7", such that J /  " ~ T and d//[ ~ is 

decidable for each i = 1,-- . ,  n. 

We now proceed immediately to a concrete example. For T we will take the 

theory ZF + --7 Infinity, consisting of the axioms of ZF with the negation of the 

axiom of infinity, rather than the axiom of infinity itself. The alphabet 

consists, of course, of the binary relation symbol E .  This theory T is easily seen 

to be incomplete and undecidable since Peano Arithmetic can be interpeted 

within it. One may regard (HF, ~ ), where HF is the set of hereditarily finite sets, 

as the standard model of T. 
We will now cover T with two complete theories T1 and T2. T~ will be in the 

alphabet ~ consisting of a single unary function symbol which we denote by iF. 

Specifically, T~ will be the complete theory of <HF, { }) where { } denotes the 

operation of taking the singleton of a set. T_~ will be in the alphabet 5C2 consisting 

of the single binary relation symbol R. Specifically, 7", will be the complete 

theory of (HF, C ). For the interpretation we take a ( E ) =  R(F(  ), ). The 

idea is, of course, that x ~ y iff {x } C_ y. 

We must now verify that T1, T2 and a give a complete decidable covering of T. 

To that end, let (A, E)  ~ T. Consider the associated models (A, { }) and (A, C ) 

where { } and C are defined within (A, E)  as usual. We must show first that 

these structures are models of T, and 7"2, respectively. We consider the two 

separately. First, suppose A is countable. Then, it is not difficult to see that 

(A, { }) is isomorphic to the positive integers with the function that assigns to 

each number its square. [It may be surprising at first how little of E remains 
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when we look only at { }.] Consequently, (A,{ })---(HF,{ }) and so 
(A, { })~ TI. In particular, T1 must be nothing but the theorems of T that can 
be written using only the defined symbol "{ }", and as such must be decidable, 
since it is complete. 

We will handle (A, C_ ) indirectly. We observe first that (A, C_ ) is always an 
infinite atomic distributive lattice. The theory of such lattices is known to be 
complete [of. 2]. This can alternatively be obtained from the completeness of the 
theory of infinite atomic Boolean algebras with a unary predicate which forms a 
non-principal prime ideal. 

Now, to verify (ii) we will use the fact that (to,.) is decidable. It is quite easy to 
see this since in (to,.) each element, and, in fact, each finite tuple of elements can 
be described up to automorphism by a single formula. We claim that (HF, { }) 
and (HF, _C ) are each decidable. The first follows since, as we observed above, 
(HF, { }) is isomorphic to to\{0} with the squaring function and 0 and the 
squaring function are definable in (t0,.). The second follows by a similar 
argument. Call a positive integer square free if it is not divisible by any square. 
Then, (HF, _C ) is easily seen to be isomorphic to the set of square free positive 
integers with the relation of divisibility. Again, both the class of square-free 
positive integers and the relation of divisibility are definable in (to,-). 

The case in which a theory has a complete decidable covering is certainly the 
exceptional one. For example, if T is any extension of Peano Arithmetic 
inconsistent with Complete Arithmetic, then T has no recursive model (actually, 
even the additive part alone cannot be recursive) and so (ii) in the definition 
could never be satisfied. This last result is due to Tennenbaum, (cf. [2]) and 
follows quite easily from the main result of [6]. The same applies to any "set 
theory" T inconsistent with the complete theory of (I-IF, • ), in particular, ZF 
itself. 

As we have seen, the property of a theory T having a complete decidable 
covering lies between the properties of T being complete decidable and T 
having a recursive model. The three properties are strictly different. We have 
also seen examples that show that a theory with a complete decidable covering 
need not be decidable. Conversely, a decidable theory need not have a complete 
decidable covering. A decidable theory such as the theory of Abelian groups 
cannot have a complete decidable coveting since it has finite models of different 
sizes. 

The next step in this program, which we will not undertake here, is the 
introduction of a weaker notion of decidable covering in which completeness is 
not required. It would then be of interest to see whether certain important 
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theories, e.g., group theory or field theory, had decidable coverings. The hope 
would be that using these notions of coverings, in addition to the notions of 
completeness and decidability, particular theories could be viewed in a more 

enlightening way. 
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